載體指南
相關(guān)服務(wù)
載體構(gòu)建質(zhì)粒DNA制備
病毒包裝服務(wù)
mRNA基因遞送解決方案
CRISPR基因編輯解決方案
shRNA基因敲低解決方案
T-DNA雙元載體(用于植物轉(zhuǎn)化)
概述
基于雙元載體的農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化是制備轉(zhuǎn)基因植物的有效方法。該系統(tǒng)利用細(xì)菌根瘤農(nóng)桿菌桿菌將外源DNA整合到多種植物細(xì)胞基因組。
農(nóng)桿菌雙元載體系統(tǒng)來源于天然腫瘤誘導(dǎo)(Ti)質(zhì)粒,農(nóng)桿菌將Ti-質(zhì)粒中的轉(zhuǎn)移DNA(T-DNA)區(qū)域整合到植物宿主基因組中。T-DNA位于兩個25 bp的T-DNA邊界重復(fù)序列之間,且兩個T-DNA邊界重復(fù)序列方向相同。在我們的雙元載體系統(tǒng)中,所有與腫瘤形成相關(guān)的序列都被去除,僅留下T-DNA邊界重復(fù)序列,兩個T-DNA邊界重復(fù)序列中間的目的序列將整合到宿主基因組中。
完整的雙元載體系統(tǒng)由兩部分組成。第一種被稱為T-DNA雙元載體(或簡稱為“雙元載體”),包含兩個T-DNA重復(fù)序列,用戶感興趣基因?qū)⒈豢寺〉絻蓚€T-DNA重復(fù)序列之間。第二種載體稱為vir輔助質(zhì)粒,負(fù)責(zé)編碼將兩個T-DNA重復(fù)序列之間的區(qū)域整合到植物細(xì)胞基因組中所必需的組分。需要通過共轉(zhuǎn)化、共電轉(zhuǎn)或融合的方式將這兩種質(zhì)粒一起導(dǎo)入根癌土壤桿菌中,然后使用該菌株侵染宿主植株。
當(dāng)雙元載體和vir輔助質(zhì)粒共存于農(nóng)桿菌時,由vir輔助質(zhì)粒編碼的蛋白反式作用于T-DNA邊界重復(fù)元件以介導(dǎo)加工,分泌和宿主基因組的整合。
關(guān)于該載體系統(tǒng)的更多信息,請參考以下文獻(xiàn)。
參考文獻(xiàn) | 主題 |
---|---|
Plant Physiology. 146:325-32 (2008) | Review of T-DNA binary vector systems. |
Trends in Plant Sci. 5:446-51 (2000) | Review of T-DNA binary vector systems. |
亮點
我們的根癌農(nóng)桿菌雙元載體系統(tǒng)能夠有效地將序列插入到靶植株基因組中。雙元載體質(zhì)粒經(jīng)過優(yōu)化后,能夠在大腸桿菌和農(nóng)桿菌中進(jìn)行復(fù)制,可介導(dǎo)目的序列高效整合到靶植物細(xì)胞中,實現(xiàn)外源基因的高水平表達(dá)。
優(yōu)勢
外源基因的穩(wěn)定整合:常規(guī)質(zhì)粒轉(zhuǎn)染只能實現(xiàn)外源基因的瞬時表達(dá),這種外源基因會隨著宿主細(xì)胞的分裂而不斷丟失,在快速分裂的細(xì)胞中顯得尤為顯著。相反的是,利用農(nóng)桿菌侵染植物細(xì)胞可以將載體上的T-DNA區(qū)域的目的基因永久導(dǎo)入到宿主植物細(xì)胞中。
技術(shù)簡單:可用雙元載體直接轉(zhuǎn)化農(nóng)桿菌或植物細(xì)胞。
載體裝載量大:我們的農(nóng)桿菌雙元載體可以容納長達(dá)20 kb的片段。
不足之處
3' 序列缺失:在植物細(xì)胞中,核苷酸降解通常會導(dǎo)致T-DNA左邊界(3')序列缺失。然而,由于用戶的目的序列被克隆在右邊界附近,從左邊界開始的降解僅會影響標(biāo)記基因的表達(dá)。所以,關(guān)于這一點并不需要過分擔(dān)心。
匹配的農(nóng)桿菌菌株和標(biāo)記:在進(jìn)行植物載體實驗時,必須注意選擇與特定雙元載體和抗性標(biāo)記基因高效匹配的農(nóng)桿菌菌株。例如,某些農(nóng)桿菌菌株本身表達(dá)抗性基因,則具有相同篩選標(biāo)記的雙元載體不能與該菌株匹配使用。
骨架序列的整合:在某些情況下,載體骨架序列可能會與T-DNA邊界重復(fù)之間的序列一起發(fā)生整合。
載體關(guān)鍵元件
Promoter: The promoter driving your gene of interest is placed here.
Kozak: Kozak consensus sequence. This is placed in front of the start codon of the ORF of interest to facilitate translation initiation in eukaryotes.
ORF: The open reading frame of your gene of interest is placed here.
Nos pA: The nopaline synthase polyadenylation signal of Agrobacterium tumefaciens. This facilitates transcription termination of the upstream ORF.
RB T-DNA repeat: Right border repeat of T-DNA. Upon recognized by Ti plasmid in Agrobacterium, the region between the T-DNA border repeats is transferred to plant cells.
pVS1 StaA: Stability protein from the plasmid pVS1. Essential for stable plasmid segregation in Agrobacterium.
pVS1 RepA: Replication protein from the plasmid pVS1. Permits replication of low-copy plasmids in Agrobacterium.
pVS1 oriV: Origin of replication from the plasmid pVS1. Permits replication of low-copy plasmids in Agrobacterium.
pBR322 ori: pBR322 origin of replication. Facilitates plasmid replication in E. coli. Plasmids carrying this origin exist in low copy numbers (15-20 per cell) in E. coli if Rop protein is present, or medium copy numbers (100-300 per cell) if Rop protein is absent.
Kanamycin: Kanamycin resistance gene. It allows the plasmid to be maintained by kanamycin selection in bacterial hosts.
LB T-DNA repeat: Left border repeat of T-DNA. Upon recognized by Ti plasmid in Agrobacterium, the region between the T-DNA border repeats is transferred to plant cells.
CaMV 35S_enhanced: A strong chimeric promoter which drives marker expression.
CaMV 35S pA: Cauliflower mosaic virus 35S polyadenylation signal. This facilitates transcription termination and polyadenylation of the marker gene.
Marker: A drug selection gene, allowing selection of plant cells transduced with the vector.